3.345 \(\int \frac{\cos ^2(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=108 \[ \frac{2 \cos (c+d x) \sqrt{a \sin (c+d x)+a}}{3 a^2 d}+\frac{2 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a \sin (c+d x)+a}}\right )}{a^{3/2} d}-\frac{10 \cos (c+d x)}{3 a d \sqrt{a \sin (c+d x)+a}} \]

[Out]

(2*Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(a^(3/2)*d) - (10*Cos[c + d*x])
/(3*a*d*Sqrt[a + a*Sin[c + d*x]]) + (2*Cos[c + d*x]*Sqrt[a + a*Sin[c + d*x]])/(3*a^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.157564, antiderivative size = 108, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.138, Rules used = {2858, 2751, 2649, 206} \[ \frac{2 \cos (c+d x) \sqrt{a \sin (c+d x)+a}}{3 a^2 d}+\frac{2 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a \sin (c+d x)+a}}\right )}{a^{3/2} d}-\frac{10 \cos (c+d x)}{3 a d \sqrt{a \sin (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^2*Sin[c + d*x])/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(2*Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(a^(3/2)*d) - (10*Cos[c + d*x])
/(3*a*d*Sqrt[a + a*Sin[c + d*x]]) + (2*Cos[c + d*x]*Sqrt[a + a*Sin[c + d*x]])/(3*a^2*d)

Rule 2858

Int[cos[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_
)]), x_Symbol] :> Simp[(d*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 2))/(b^2*f*(m + 3)), x] - Dist[1/(b^2*(m + 3)
), Int[(a + b*Sin[e + f*x])^(m + 1)*(b*d*(m + 2) - a*c*(m + 3) + (b*c*(m + 3) - a*d*(m + 4))*Sin[e + f*x]), x]
, x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GeQ[m, -3/2] && LtQ[m, 0]

Rule 2751

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*Sin
[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m,
-2^(-1)]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos ^2(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx &=\frac{2 \cos (c+d x) \sqrt{a+a \sin (c+d x)}}{3 a^2 d}-\frac{2 \int \frac{\frac{a}{2}-\frac{5}{2} a \sin (c+d x)}{\sqrt{a+a \sin (c+d x)}} \, dx}{3 a^2}\\ &=-\frac{10 \cos (c+d x)}{3 a d \sqrt{a+a \sin (c+d x)}}+\frac{2 \cos (c+d x) \sqrt{a+a \sin (c+d x)}}{3 a^2 d}-\frac{2 \int \frac{1}{\sqrt{a+a \sin (c+d x)}} \, dx}{a}\\ &=-\frac{10 \cos (c+d x)}{3 a d \sqrt{a+a \sin (c+d x)}}+\frac{2 \cos (c+d x) \sqrt{a+a \sin (c+d x)}}{3 a^2 d}+\frac{4 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\frac{a \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{a d}\\ &=\frac{2 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a+a \sin (c+d x)}}\right )}{a^{3/2} d}-\frac{10 \cos (c+d x)}{3 a d \sqrt{a+a \sin (c+d x)}}+\frac{2 \cos (c+d x) \sqrt{a+a \sin (c+d x)}}{3 a^2 d}\\ \end{align*}

Mathematica [C]  time = 0.869575, size = 149, normalized size = 1.38 \[ \frac{\sqrt{a (\sin (c+d x)+1)} \left (9 \sin \left (\frac{1}{2} (c+d x)\right )+\sin \left (\frac{3}{2} (c+d x)\right )-9 \cos \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{3}{2} (c+d x)\right )+(12+12 i) (-1)^{3/4} \tanh ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) (-1)^{3/4} \sec \left (\frac{d x}{4}\right ) \left (\cos \left (\frac{1}{4} (2 c+d x)\right )-\sin \left (\frac{1}{4} (2 c+d x)\right )\right )\right )\right )}{3 a^2 d \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^2*Sin[c + d*x])/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(Sqrt[a*(1 + Sin[c + d*x])]*((12 + 12*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*Sec[(d*x)/4]*(Cos[(2*c + d*
x)/4] - Sin[(2*c + d*x)/4])] - 9*Cos[(c + d*x)/2] + Cos[(3*(c + d*x))/2] + 9*Sin[(c + d*x)/2] + Sin[(3*(c + d*
x))/2]))/(3*a^2*d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))

________________________________________________________________________________________

Maple [A]  time = 0.723, size = 112, normalized size = 1. \begin{align*}{\frac{2+2\,\sin \left ( dx+c \right ) }{3\,{a}^{3}\cos \left ( dx+c \right ) d}\sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) } \left ( 3\,{a}^{3/2}\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a-a\sin \left ( dx+c \right ) }\sqrt{2}}{\sqrt{a}}} \right ) - \left ( a-a\sin \left ( dx+c \right ) \right ) ^{{\frac{3}{2}}}-3\,a\sqrt{a-a\sin \left ( dx+c \right ) } \right ){\frac{1}{\sqrt{a+a\sin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^(3/2),x)

[Out]

2/3*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(3*a^(3/2)*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(
1/2))-(a-a*sin(d*x+c))^(3/2)-3*a*(a-a*sin(d*x+c))^(1/2))/a^3/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{2} \sin \left (d x + c\right )}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^2*sin(d*x + c)/(a*sin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 1.75489, size = 595, normalized size = 5.51 \begin{align*} \frac{\frac{3 \, \sqrt{2}{\left (a \cos \left (d x + c\right ) + a \sin \left (d x + c\right ) + a\right )} \log \left (-\frac{\cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + \frac{2 \, \sqrt{2} \sqrt{a \sin \left (d x + c\right ) + a}{\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{\sqrt{a}} + 3 \, \cos \left (d x + c\right ) + 2}{\cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right )}{\sqrt{a}} + 2 \,{\left (\cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right ) + 5\right )} \sin \left (d x + c\right ) - 4 \, \cos \left (d x + c\right ) - 5\right )} \sqrt{a \sin \left (d x + c\right ) + a}}{3 \,{\left (a^{2} d \cos \left (d x + c\right ) + a^{2} d \sin \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/3*(3*sqrt(2)*(a*cos(d*x + c) + a*sin(d*x + c) + a)*log(-(cos(d*x + c)^2 - (cos(d*x + c) - 2)*sin(d*x + c) +
2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(d*x + c) + 1)/sqrt(a) + 3*cos(d*x + c) + 2)/(cos(d*x +
c)^2 - (cos(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2))/sqrt(a) + 2*(cos(d*x + c)^2 + (cos(d*x + c) + 5)*s
in(d*x + c) - 4*cos(d*x + c) - 5)*sqrt(a*sin(d*x + c) + a))/(a^2*d*cos(d*x + c) + a^2*d*sin(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*sin(d*x+c)/(a+a*sin(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 2.29189, size = 332, normalized size = 3.07 \begin{align*} \frac{2 \,{\left (\frac{2 \,{\left ({\left ({\left (\frac{2 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )} - \frac{3}{\mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \frac{3}{\mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \frac{2}{\mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}\right )}}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a\right )}^{\frac{3}{2}}} + \frac{{\left (6 \, \sqrt{2} a \arctan \left (\frac{\sqrt{a}}{\sqrt{-a}}\right ) + 5 \, \sqrt{2} \sqrt{-a} \sqrt{a}\right )} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{\sqrt{-a} a^{2}} - \frac{6 \, \sqrt{2} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} + \sqrt{a}\right )}}{2 \, \sqrt{-a}}\right )}{\sqrt{-a} a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}\right )}}{3 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

2/3*(2*(((2*tan(1/2*d*x + 1/2*c)/sgn(tan(1/2*d*x + 1/2*c) + 1) - 3/sgn(tan(1/2*d*x + 1/2*c) + 1))*tan(1/2*d*x
+ 1/2*c) + 3/sgn(tan(1/2*d*x + 1/2*c) + 1))*tan(1/2*d*x + 1/2*c) - 2/sgn(tan(1/2*d*x + 1/2*c) + 1))/(a*tan(1/2
*d*x + 1/2*c)^2 + a)^(3/2) + (6*sqrt(2)*a*arctan(sqrt(a)/sqrt(-a)) + 5*sqrt(2)*sqrt(-a)*sqrt(a))*sgn(tan(1/2*d
*x + 1/2*c) + 1)/(sqrt(-a)*a^2) - 6*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2
*d*x + 1/2*c)^2 + a) + sqrt(a))/sqrt(-a))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2*c) + 1)))/d